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A B S T R A C T   

The objective of study was to explore those brain areas that were affected at each stage during the progression of 
Alzheimer’s disease (AD). Six affected brain areas were explored at mild cognitive impairment, four at first stage 
and six at each of second and third stage of Alzheimer’s disease. The common brain regions among these stages 
were cuneus, precuneus, calcarine cortex, middle frontal gyrus, superior frontal gyrus, and frontal superior 
medial gyrus. The fMRI data at the resting state of 18 AD patients who were converted from MCI to stage 3 of 
Alzheimer’s were taken from ADNI public source database. Among these patients, there were ten males and eight 
females. Independent component analysis was used to explore affected brain regions and an algorithm based on 
deep learning convolutional neural network was proposed for binary classification among the stages of Alz-
heimer’s disease. The proposed CNN model delivered 94.6 % accuracy for separating stage 1 of Alzheimer’s 
disease from mild cognitive impairment. 96.7 % accuracy was acquired to distinguish stage 2 of Alzheimer’s 
disease from mild cognitive impairment, and stage 3 of Alzheimer’s disease was separated from mild cognitive 
impairment with an accuracy of 97.8 %.   

1. Introduction 

Alzheimer’s is a disease (AD) that is considered to cause dementia. 
Most of Dementia cases are driven by Alzheimer’s disease (Weiming 
et al., 2018). Dementia is not only a single disease but a general term 
used for various symptoms of memory loss, cognitive decline, trouble in 
communication, and many other related brains to perform routine tasks. 
Alzheimer’s disease is said to be an irreversible disease that is caused by 
damage to the brain cells (Ahmad et al., 2019). This disease was named 
after Dr. Alois Alzheimer when he noticed a change in brain cells of a 
woman who died in 1906 due to an unusual mental illness and found 
that the women brain contained two proteins: beta-amyloid (plaques) 
and tangle (tau) (Hippius and Neundörfer, 2003). These plaques develop 
between neurons, and tangles grow inside neurons. The development of 
these proteins causes a loss in the connection between neurons and thus 
breaks the transmission of messages that travel from one region to other 
brain regions. Our brain consists of around a hundred billion neurons, 
and each neuron is connected with many others to form a communica-
tion network (Yadav et al., 2018). Each cluster of neurons has a specific 
task to perform. Some are responsible for thinking, remembering, vision, 

listening, smelling, and other charges. Each neuron group is associated 
with others, and these neurons communicate to execute a task. AD 
causes shrinkage of various brain regions and networks associated with 
thinking, memory, planning, and decision making (Sarrafa and Tofigh, 
2016). 

Scientists believe that AD prevents the communication between 
neurons, and consequently, their job is not performed as it could be. 
Blockage in communication happens due to damage in the brain cells 
(neurons), and as the damage spreads, the neurons in the whole cluster 
cannot function well, due to which the connected neurons become un-
able to receive information and execute the task. Hence the destruction 
of brain cells continues and cannot be reversed or repaired. Alzheimer’s 
disease progresses in three stages where the pre-initial stage, when AD 
shows some symptoms of memory trouble, is known as mild cognitive 
impairment (MCI). In the next stage, the disease gets severe, and the 
patient suffers trouble in performing daily tasks. The studies given in 
Ahmad and Dar (2018), Ahmad et al. (2019), Davatzikos et al. (2011), 
Casanova et al. (2011) and Wang et al. (2006) identified some brain 
regions that are affected by AD. Despite all these studies, to the best of 
authors’ knowledge, no study was designed to investigate the affected 
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brain regions at each stage of AD. 
The present study aimed to explore those brain areas that are 

affected at each stage during the progression of AD, which has not been 
done so far. Moreover, recent advancements in deep learning that 
grabbed research scholars are image classification based on Convolu-
tional Neural Networks (CNN). It is a powerful technique that involves 
convolutional layers to extract different features from data, and further 
classification and prediction are performed using those extracted fea-
tures (Albawi et al., 2017). This study will add to the literature by 
proposing a novel CNN model based on the DL algorithm to perform 
classification among AD stages based on fMRI data. 

2. Materials and methods 

2.1. Data description 

The present study used fMRI data at the resting state of 18 AD pa-
tients who converted from MCI to stage 3 Alzheimer’s. The data was 
obtained from Alzheimer’s Disease Neuroimaging Initiative ADNI 
dataset (adni.loni.usc.edu). Among these patients, there were ten males 
and eight females. Each patient was given a separate ID as 2036 F, 2045 
M, 2055 M, 2073 F, 2123 F, 2130 M, 2133 F, 2155 F, 2180 F, 2191 F, 
2195 M, 2208 M, 2225 M, 2264 M, 2274 M, 2301 M, 2304 M and 2373 F 
where F stands for female and M stands for male. The resting-state fMRI 
was taken using a Philips scanner; the number of scans per subject were 
105; the volume dimensions were X = 64, Y = 64, and Z = 20; the voxel 
size is X = 4, Y = 4, and Z = 5, 3 T; and repetition time (TR) is 3400.0 ms. 
The fMRI data were preprocessed on a statistical parametric mapping 
tool (SPM), usually known as SPM12 in MATLAB. Four steps (reor-
ientation, realignment, normalization, and smoothing) were performed 
to clean data from preprocessing. Conversion of the functional image 
according to temple image ’EPI.nii’ so that each image can be trans-
formed to a similar position was done with reorientation. Further noise 
was removed from reoriented data using realignment or generally called 

motion correction. Such a correction is needed due to the fact that a 
subject may move his head up or down or tilt from left to right. To 
remove both types of noise, ’translation’ and ’rotation’ realignment was 
mandatory. 

Normalization is used to modify the functional images to a standard 
MNI template brain; this can help compare functional activation across 
individuals. When normalization was done, all the realigned and 
normalized images were smoothed. Smoothing averages data points 
with their neighbors. It blurs sharp edges so that high-frequency signals 
are suppressed, and low-frequency signals may be enhanced. 

2.2. Methodology 

The proposed architecture for data analysis consists of two phases. In 
the first phase, group ICA was applied to fMRI data to extract informa-
tion from mixed data so that those specific brain areas affected at 
different AD stages may be located. In the second phase, the DL algo-
rithm was proposed for separation between MCI and the three stages of 
AD. These phases are described in the following sections. 

2.3. Application of ICA 

Independent component analysis (ICA) also known as blind source 
separation (BSS) method is mostly used to find out those independent 
hidden sources/factors where the information originated (Stone, 2004). 
It has also been used for separating components from fMRI data. Chat-
terjee et al. (2019), Correa et al. (2007), Zhao et al. (2004) and Calhoun 
et al. (2004) used ICA in their studies with fMRI data. 

Fig. 1 describes how ICA uses mixed information (observable) 
generated from different sources and then converts that information to 
original sources. Mathematically, we observe ‘n’ linear mixtures (x1, x2,

…, xn) of ‘n’ independent components (s1, s2,…, sn) defined as: 

xj = aj1s1 + aj2s2 +…+ ajnsn (1) 

Fig. 1. Un-mixing mixed information using ICA and proposed CNN model.  
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Where j = 1,2,…, n. Now consider x = (x1, x2,…xn)
T
, s =

(s1, s2,…sn)
Tand weight matrix A with aij components, then the above 

mixing model can be written as: 

x = As (2) 

The purpose of ICA is to determine component vectors, which can be 
found as: 

s = A− 1x (3) 

The matrix ‘A’ is further determined by using singular value 
decomposition method (SVD) by the equation: 

A = uΣvT (4)  

Where u is m × n matrix of the orthonormal eigenvectors of AAT , vT is 
the transpose of a n × n matrix containing the orthonormal eigenvectors 
of ATA. 

Thus the final model can be written as: 

s =
(
uΣvT)− 1x (5) 

After preprocessing of data, independent component analysis was 
applied to extract the active brain regions. We do not know from the 
literature which part of the brain has a problem at each stage of AD. 
Using ICA, mixed signals generated from various parts of the brain were 
separated for each patient at each stage. This was done with the help of a 
toolbox called ’GIFT’. It divides the activations into various locations 
from which these were initially generated. GIFT only identifies the 
particular active region and provides its peak MNI coordinates but does 
not tell the name of that particular region. This is further done with 
MRICron using the aal.nii image given in it to identify the particular 
region using coordinates given by GIFT. 

2.4. Application of convolutional neural network 

After detecting the affected brain region by ICA at various stages of 
AD, a convolutional neural network based on a deep learning approach 
for making classification between stages of AD was applied. Basaia et al. 
(2019) used CNN for making binary classification between converted 
MCI, stable MCI, and healthy controls. They used pre-trained weights for 
classification purposes. This study proposed a novel CNN model with 
two convolutional layers and three flattened layers and trained the pa-
rameters using python programming. The structure of the proposed 
model is given in Fig. 1. 

The CNN model in Fig. 1 was applied to separate MCI from stage 1, 
stage 2, and stage 3 of AD. The first layer of the CNN model is the input 
layer. Very next to the input layer, we have a convolutional layer 
derived from the input layer. The goal of the convolution layer is to 
apply filters, also referred to as kernels, to the input layer to extract 
different features of the input image. Each filter is designed to extract 
different features such as line, curve, edge, or color. The interesting 
thing is that there is no hard and fast rule to fix the number of filters and 
size of each filter to be used in each convolutional layer. Next to the 
convolutional layer, non-linearity was introduced by using a function 
called the activation function because for classification a clear image is 
required. The activation functions are used to increase the non-linearity 
because images are naturally non-linear. ReLu (Rectified linear units) 
and sigmoid are the most well-known activation functions for this pur-
pose. The ReLu function returns zero value to negative value; for the 
positive value, it returns the same value. Mathematically, it can be 
shown in Eq. (6), where x is the input value; 

f (x) = max(o, x) (6) 

A pooling layer was introduced after applying the activation func-
tion. The purpose of pooling is to reduce the output neurons by 
combining them. The average pooling or max-pooling method is used for 

this purpose. Fully connected layers are introduced after the pooling 
layer. These fully connected layers are similar to multilayer neural 
networks. 

3. Analysis results 

After preprocessing of data, we investigated the brain regions that 
were active during the resting state at MCI, stage 1, stage 2, and stage 3 
of AD. These regions were extracted with independent component 
analysis (ICA) by using the group independent component analysis 
toolbox (GIFT). Fifteen ICs were run for each subject, and those ICs that 
showed some pattern in variation were chosen. GIFT only identifies the 
active brain regions but fails to identify the particular region name. It 
only gives the peak MNI coordinate of that particular region. To identify 
the name of a particular region, MRICron was used by using automated 
anatomical labeling (aal.nii) and MNI coordinates provided by the GIFT 
toolbox. By using MRICron and inserting peak coordinates in the MNI 
field, we located the specific region corresponding to each component, 
such as in the slice view given in the Fig. 2 (left side), IC shows activation 
in the superior frontal gyrus region. A multi-slice view of the area 
’precuneus’ corresponding to another IC of the same subject is given in 
Fig. 2 (right side). Similarly, using the MNI coordinates in mricron32, 
specific regions of other components were identified. 

The Fig. 3 (left side) shows the slice and composite view of 5 inde-
pendent components of a single subject. On the left top of the figure, 
signals recorded are drawn to show up and down variations. The 
element with red color represents the variation from the 3rd IC, which 
corresponds to the region of the middle frontal gyrus; the blue color 
shows the variation of the 8th IC, which is against the region of pre-
cuneus. Similarly, the green color represents the variation from the area 
of the cuneus, the pink-colored area is for the superior frontal gyrus, and 
the area marked with yellow color represents the variation of 15th IC, 
which has peak activation in the region of the putamen. The connecto-
gram in Fig. 3 (right side) shows different components were plotted in a 
circle, the correlation between different components is shown with 
different colors according to the color map given at the right bottom. 
Each of the components is also represented by a different color. Outside 
the circle, each component’s sagittal view is also mapped. 

3.1. Voxel data extraction 

We combined the data of each patient by calculating the mean 
image. That is, all the 105 images of each patient were combined. The 
first-level analysis was performed, and voxel data of specified regions 
were extracted using the labels given in SPM12. When the brain regions 
were specified using ICA, the voxel data for the corresponding brain 
regions were extracted at each stage by using SPM12. 

3.2. Identification of affected brain regions of Alzheimer’s disease 

After preprocessing data, we investigated the brain regions that were 
active during the resting state at MCI, stage 1, stage 2, and stage 3 of AD. 
These regions were extracted with independent component analysis 
(ICA) by using the group independent component analysis toolbox 
(GIFT). Result summary of the GIFT toolbox not only extracted ICs but 
also provided peak coordinates against each component; these co-
ordinates were further used to label corresponding brain regions that 
were active during the resting state experiment. A template file 
"Anatomical Automated Labeling" (AAL.nii) from the MRICron toolbox 
was used to label the corresponding region at each peak coordinate of 
each component. We selected only those identified regions that were 
most common. For example precuneus was observed as an affected re-
gion in 5 patients out of 18 at MCI and stage 2 of AD. It was also observed 
in 3 patients at stage-3 but was observed in only 2 patients at stage 1 of 
AD. That is why this particular region was not selected as an affected 
region at stage 2. After identifying the affected brain regions, the voxel 
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Fig. 2. Multi-slice view of frontal superior gyrus and precuneus.  

Fig. 3. Multi-slice composite view along with connectogram between components.  

Table 1 
Identification of affected brain regions at AD.   

Brain Region Cuneus Precuneus Parahippocampal Putamen Superior Frontal Gyrus Middle Frontal Gyrus 
MCI N (%) 4 (22.2) 4 (22.2) 5 (27.7) 3 (16.6) 5 (27.7) 4 (22.2) 

Mean 
Correlation 

0.6657 0.5918 0.5899 0.7153 0.6686 0.5623  

Brain Region Cuneus Calcarine 
Cortex 

Superior Frontal Medial 
Gyrus 

Middle Frontal Gyrus 

Stage 
1 

N (%) 4 (22.2) 3 (16.6) 6 (33.3) 6 (33.3) 
Mean 
Correlation 

0.6045 0.5997 0.6813 0.583  

Brain Region Calcarine 
Cortex 

Precuneus Insula Superior Frontal 
Gyrus 

Superior Frontal Medial 
Gyrus 

Middle Frontal Gyrus 

Stage 
2 

N (%) 4 (22.2) 5 (27.7) 4 (22.2) 4 (22.2) 4 (22.2) 7 (38.8) 
Mean 
Correlation 

0.5554 0.7247 0.7112 0.6429 0.646 0.6774  

Brain Region Calcarine 
Cortex 

Precuneus Parahippocampal Superior Frontal 
Gyrus 

Superior Frontal Medial 
Gyrus 

Middle Temporal 
Gyrus 

Stage 
3 

N (%) 6 (33.3) 3 (16.6) 4 (22.2) 5 (27.7) 3 (16.6) 3 (16.6) 
Mean 
Correlation 

0.6847 0.707 0.8446 0.6955 0.6238 0.615  
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data of these particular areas were extracted using the SPM atlas, and the 
mean voxel was calculated using MATLAB. 

The voxel’s values are then mapped with the TC of ICA using cor-
relation analysis. Here we considered the absolute value of the corre-
lation coefficient. All the regions given in Table 1 were found to have a 
high positive correlation with their corresponding TC, which confirmed 
the activation of these brain regions of AD patients at MCI, stage 1, stage 
2 and stage 3 of AD patients. Supplemental Figure 1 shows the orthog-
onal view of active brain areas during the resting state at MCI (A), stage 
1 (B), stage 2 (C), and stage 3 (D) where all regions are mapped with 
different colors. Legends at the right bottom show names of corre-
sponding brain regions. 

The proposed deep learning algorithm achieved 94.7 % accuracy for 
classifying MCI and stage 1 of AD, 96.7 % for classifying MCI and stage 2 
of AD, and 97.8 % for separating MCI from stage 3 of AD. Table 2 pre-
sents the results attained by the deep learning algorithm CNN that was 
considered for classification, the results of the diagnostic tests are also 
given in the Table 2. Supplemental Figure 2 presents the train and test 
accuracy during each epoch. The blue line represents the accuracy 
attained by training data, while the red line represents the accuracy 
achieved by test data, left to right are the three stages respectively. The 
trend of both lines advocates a gradual increase in accuracy after every 
epoch. 

4. Discussion and conclusion 

Alzheimer’s disease damages various brain regions that are related to 
memory and cognition. Many researches have been carried out to 
investigate and validate these regions. Ahmad and Dar (2018) consid-
ered hippocampus as an affected area of the brain during AD. Davatzikos 
et al. (2011) stated that deterioration occurs in temporal lobe gray 
matter and white matter, posterior cingulate/precuneus, and insula 
among individuals who are converted from MCI to AD. Casanova et al. 
(2011) stated that neurodegeneration occurs in the entorhinal cortex 
and hippocampus and then spreads in some temporal, frontal, and pa-
rietal regions as they affect brain areas in AD. Wang et al. (2006) found a 
decline in functional connectivity between the hippocampus and other 
brain regions; medial frontal cortex, anterior cingulate cortex, inferior 
temporal cortex, cuneus, precuneus, superior temporal gyrus, middle 
temporal gyrus, and posterior cingulate gyrus, whereas growth in 
functional connectivity was observed between left hippocampus and 
lateral prefrontal cortex. 

This study focused on the extraction of those specific regions that are 
affected by AD at each stage which was ignored in previous literature. 
This objective was achieved by ICA, which was run on GIFT Toolbox 
v4.0 in MATLAB. Chatterjee et al. (2019) used GIFT to run ICA on fMRI 
data to identify the affected brain regions that are associated with 
working memory in case of schizophrenia. They considered 13 ICs of 
each subject/patient. After identification of ICs, they used Automated 
Anatomical Labeling (AAL) atlas to mark the corresponding brain re-
gion. In their conclusion, the most repeated ICs were reported as affected 
brain regions during Schizophrenia problems. The present study was 
headed in a similar way but with four stages. The same process was 
repeated on fMRI data on AD for each patient/subject at the initial stage 
(MCI), stage 1, stage 2, and stage 3. 15 ICs of each patient were 
considered, and the signal pattern of each IC was observed. Those ICs 
that were not showing any pattern were ignored, and for the remaining 
ICs, the corresponding brain regions from where the signals were 
generated was evacuated using Automated Anatomical Labeling (AAL) 
atlas in the mricron32 tool. The correlation method confirmed the ICs 
that were taken out. The voxel data of identified regions against each 
component were extracted using SPM12, and correlation between IC 
and voxel data was observed using correlation coefficient. The regions 
for which the correlations between components and corresponding 
voxels data found greater/equal to 0.5 were considered to be confirmed 
affected regions/areas. The regions that were repeated among subjects 

at a particular stage were taken out, Table 1 provides those repeated 
regions that were observed at the initial stage MCI, Stage 1, Stage 2 and 
Stage 3. It may be noted that some of the regions that we identified here 
have also been discussed in previous studies, but those studies did not 
identify the particular stage. Secondly, our study affirmed some new 
regions that have not been reported to date in the literature related to 
working with brain regions during AD. Thus this work may open a new 
path for the researchers and may be a significant part of new studies in 
this area. 

Along with detecting various brain regions that are affected in case of 
AD, a deep learning-based model was also introduced for binary clas-
sification known as convolutional neural network (CNN). Binary clas-
sification was done between MCI and stage 1, MCI and stage 2, MCI and 
stage 3 with the proposed model. CNN is also designed to deal with big 
data with more efficiency and accuracy. In our study, CNN was used to 
make classification between various stages of AD using fMRI data. The 
algorithm of CNN was developed using Python language and executed 
on Google Co-lab so that heavy and huge data can be handled success-
fully. Maqsood et al. (2019) applied CNN to make classification between 
the stages of AD. They only considered OASIS data containing only 382 
images and used a pre-trained CNN model (Alex-Net). In their study 
three stages of AD, very mild, mild, and moderate, were taken into ac-
count along with no AD. Another study by Basaia et al. (2019) collected 
data on three phases from ADNI-1, ADNI-Go, and ADNI-2 and named 
these stages as healthy control, MCI, and Probable AD and performed 
binary classification using pre-trained CNN model. In our study, we 
considered four stages of AD as MCI, stage 1, stage 2, and stage 3 for 
binary classification with the CNN algorithm, and for each algorithm, 
1860 images were used, which means a large number of images were 
taken for this classification purpose. Moreover, we trained our model 
with the data in hand rather than using pre-trained weights. Our model 
provided 94.6 % accuracy for classifying MCI and stage 1 of AD, 96.7 % 
for separating MCI from stage 2 of AD, and 97.8 % for distinguishing 
between MCI and stage 3 of AD. 
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